微博登录
既然无穷大也是数,那我们看到两样东西总是要本能的做一个比较,那看到无穷大的时候我们也会这样想,两个无穷大之间是不是也可以比较大小呢?看到这里可能就有人说了,都是无穷大了还怎么会有大小呢?如果一个无穷大比另一个无穷大更大一些,那我让那个小一些的无穷大再大一些,直到比那个大一些的无穷大更大一些为止不行吗?那么这里就犯了一个错误,那就是无穷大不是一个具体的数,当我们这样比较的时候就给无穷大默认了一个数值,而没有意识到无穷大是可以无限增大的。
那么我们先从简单的问题入手:“所有的整数的个数和一条直线的所有几何点的个数,究竟哪个大些?”——这个问题有意义吗?这个问题乍一看也真让人头大,但是数学家康托尔首先思考了这个问题。
这两个数既无法数出来,也无法表示,那怎么比较呢?康托尔提出可以将两组无穷大数进行一一配对,如果两组数最后都一个不剩,那么两个无穷大是一样大的;如果其中一组数还剩下了其他的数,那么这个无穷大便比另一个更大些。这显然是合理的。
我们先举一个最简单的例子,当我们在统计学校中桌子和椅子的数量时,使一张桌子配一把椅子,那么当多出椅子时,那么必定是椅子多,我们再让一个学生对应一副桌椅,那么多出的学生便是缺少的桌椅数,或多出的桌椅数加上学生数便是总的桌椅数。
数桌椅自然是很简单的问题,当我们回到无穷大之间的比较时,也是这样的思路。“所有的整数的个数和一条直线的所有几何点的个数,究竟哪个大些?”我们可以用刚才所说的方法,假设在直线的一头有一个点A,那么这条直线上就会有整数个点到点A的距离为整数,可是问题在于还有的点到点A的距离为小数,比如0.2236541…,那么整数与直线上点的一一对应关系也就不存在了,因此直线上的点是多于整数的个数的,两个无穷大的大小关系也就很明显了,直线上的几何点的数目是多于整数的。
那我们可以再证明一个很简单的例子。我们知道偶数与奇数的个数是相等的,那我们该如何证明呢?按照上文所说,我们应建立一个一一对应关系,很显然,这个一一对应关系很好找,让一个奇数加1便得到了偶数,那么奇数与偶数的一一对应关系我们就找到了,那自然就可以证明奇数与偶数的个数相等了。